Noncentral Beta Distribution Functions
Source:R/non_central_beta_distribution.R
      non_central_beta_distribution.RdFunctions to compute the probability density function, cumulative distribution function, and quantile function for the Noncentral Beta distribution.
Usage
non_central_beta_distribution(alpha, beta, lambda)
non_central_beta_pdf(x, alpha, beta, lambda)
non_central_beta_lpdf(x, alpha, beta, lambda)
non_central_beta_cdf(x, alpha, beta, lambda)
non_central_beta_lcdf(x, alpha, beta, lambda)
non_central_beta_quantile(p, alpha, beta, lambda)Value
A single numeric value with the computed probability density, log-probability density, cumulative distribution, log-cumulative distribution, or quantile depending on the function called.
See also
Boost Documentation for more details on the mathematical background.
Examples
# Noncentral Beta distribution with shape parameters alpha = 2, beta = 3
# and noncentrality parameter lambda = 1
dist <- non_central_beta_distribution(2, 3, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.5977904
logcdf(dist, 0.5)
#> [1] -0.514515
pdf(dist, 0.5)
#> [1] 1.643543
logpdf(dist, 0.5)
#> [1] 0.4968546
hazard(dist, 0.5)
#> [1] 4.086286
chf(dist, 0.5)
#> [1] 0.910782
mean(dist)
#> [1] 0.44664
median(dist)
#> [1] 0.4416064
mode(dist)
#> [1] 0.4262677
range(dist)
#> [1] 0 1
quantile(dist, 0.2)
#> [1] 0.2549084
standard_deviation(dist)
#> [1] 0.2040433
support(dist)
#> [1] 0 1
variance(dist)
#> [1] 0.04163366
# Convenience functions
non_central_beta_pdf(0.5, 2, 3, 1)
#> [1] 1.643543
non_central_beta_lpdf(0.5, 2, 3, 1)
#> [1] 0.4968546
non_central_beta_cdf(0.5, 2, 3, 1)
#> [1] 0.5977904
non_central_beta_lcdf(0.5, 2, 3, 1)
#> [1] -0.514515
non_central_beta_quantile(0.5, 2, 3, 1)
#> [1] 0.4416064